ETV6 (ETS translocation-variant gene 6, located on chromosome 12p), also known as TEL, encodes a transcription repressor belonging to the E26 transforming specific (ETS) family of DNA-binding proteins. ETV6 is known as a proto-oncogene involved in translocation with over 40 partners. In acute myeloid leukemia (AML) only a few rare translocations result in transforming fusion proteins, indicating that the oncogenic role of ETV6 does not play a major part in AML. However, abnormalities of the short arm of chromosome 12 (12p) are found in about 5% of AML and myelodysplastic syndromes. Most abnormalities consist of total or partial loss of 12p usually affecting ETV6 and CDKN1B, implicating these genes as tumor-suppressor genes.

Recently, heterozygous mutations of ETV6, resulting in loss of repressor activity, were found in AML, adding to the view that ETV6 might have tumor-suppressor characteristics.

Whereas translocations and deletions involving ETV6 have been reported in AML-M0, ETV6 mutations were never investigated specifically in this subtype. To better understand the role of ETV6 in AML-M0, we studied 52 M0 patients using cytogenetic techniques complemented with single-nucleotide polymorphism (SNP) arrays and sequencing of ETV6, as described in the Supplementary Information. The cohort was not selected for any parameter rather than being AML-M0, had a median age of 61 years (one patient was a child) and consisted of de novo, therapy-related (1 case) and secondary leukemia (4 cases).

Three patients presented deletions ranging from 3.2 to 14.3 Mb in 12p. The minimal overlap region of deletion between these patients included ETV6 but did not include CDKN1B. Two other patients had a t(4;12)(q12;p13). In both patients, we detected an out-of-frame CHIC2-ETV6 fusion transcript. The reciprocal transcript was not detected, supporting the view that t(4;12) does not result in an oncogenic fusion protein. In addition, we detected ETV6-inactivating biallelic mutations in one patient and mutations leading to ETV6 truncated proteins in another two patients (5.7%).

DNA isolated from flow-sorted leukemic cells was compared with T-cell control DNA using GeneChip 10K arrays (Affymetrix, Santa Clara, CA, USA). Deletions in 12p were detected as loss of heterozygosity and copy-number reduction in patients 1, 9 and 45 (Figure 1). The deletion in patient 9, confirmed by fluorescent in situ hybridization (FISH) analysis (Figure 2a), was accompanied by a t(10;12)(q11;p11) translocation detected by karyotyping (Table 1). Whereas deletions in patients 1 and 45 included both ETV6 and CDKN1B, the proximal deletion break point in patient 9 excluded CDKN1B (Figure 1). The minimal deleted overlapping region extended from rs252028 (position 9814 kb) to rs747726 (position 12 561 kb). Together with the studies by Baens et al. and La Starza et al., with proximal breakpoint at d12s358 (a marker close to rs747726), these are the most telomeric break points, including ETV6 ever reported. Both studies set the distal break point at the PRB3 gene, delimiting a region of 1200 kb (Figure 1c). Because inactivation of the second allele of ETV6, or another gene, in the deleted region was never found, haplo-insufficiency of ETV6 has been suggested as an AML mechanism.

The t(4;12)(q12;p13) translocation, although rare, is a recurrent event in AML, particularly in subtype M0. Previous studies have mapped the break points of this translocation within ETV6 and three regions in chromosome 4: CHIC2, HSG2 and an area between these two genes. Cools et al. reported four cases where the t(4;12)(q12;p13) fused the first three exons in CHIC2 on 4q12 to exons 2–8 of the ETV6 gene in 12p13, resulting in the expression of a hybrid CHIC2-ETV6 transcript in all cases. In our cohort, patients 2 and 43 showed t(4;12)(q12;p13) (Table 1). In patient 2, FISH showed splitting signals of bacterial artificial chromosome (BAC) probes RP11-367N1 and of pooled RP11-96B19 and RP11-418C2 probes corresponding to the positions of CHIC2 and ETV6, respectively (Figure 2b). Unfortunately, metaphases for patient 43 were not available for FISH analysis. We screened both patients for CHIC2-ETV6 transcripts using the same approach described by Cools et al. Both patients, and in contrast with that study, we could only detect an ETV6-CHIC2 fusion transcript that consisted of the first exon of ETV6 and exons 2–6 of CHIC2 (Figure 2c). The fusion transcript, mainly consisting of exon 1 of ETV6, encodes a very short out-of-frame protein (Figures 2c and d). We repeatedly failed to detect the reciprocal CHIC2-ETV6 transcript in both patients, which, if present, would consist of the first exon of CHIC2 and exons 2–8 of ETV6, producing again an out-of-frame fusion transcript. In addition, we did not detect loss of the remaining allele in any of the patients (Figure 1). This finding is in line with the absence of the transforming ability of the CHIC2-ETV6 protein described by Cools et al., and further supports the idea that the fusion protein is not the element of pathogenesis. The heterogeneity of the t(4;12) adds to this view. Several AML studies reported different translocations involving ETV6, but lacking functional fusion proteins. In some cases, it has been shown that ectopic overexpression of proto-oncogenes at the partner chromosomes might be the malignant event. Still in many other cases, neither a functional fusion protein nor an alternative malignant mechanism was found.

This suggests that heterozygous disruption of ETV6 by the translocation results in ETV6 haplo-insufficiency and is part of the process resulting in AML. Adding to this, many translocations in AML involving break points outside the ETV6 locus are accompanied by cryptic deletions that include ETV6, suggesting targeting of this gene. This is the case of patient 9 for whom FISH analysis showed that the deletion break points coincided with the translocation break point linking these two events (Figure 2a; Supplementary Figure 1).

We amplified and sequenced all 8 exons of ETV6 using genomic DNA of the 52 patients. Mutations in ETV6 have only been reported previously in five AML patients (M1 and M2) and in prostate cancer. We found insertions in patients 6 and 58, and a point mutation in patient 21 (Figure 3; Table 1). Mutations in patient 6 were biallelic, including a frameshift mutation in one allele, resulting in a truncated protein, and an insertion in...
Figure 1 Single-nucleotide polymorphism analysis of patients with chromosome 12 abnormalities. (a) Loss-of-heterozygosity values based on haplotype, using the paired normal. Each box represents the combined call between tumor sample and respective control (T cells). Black boxes represent loss of heterozygosity, dark gray boxes no loss and light gray boxes non-informative markers. Boxes are displayed proportionally to the position of the SNP that they represent in relation to the cytogenetic band to the left of the panel. (b) Chromosome copy number calculated for the common region showing loss of heterozygosity in panel a (amplified). Copy number for the tumor samples was inferred using the paired normal as reference and a median smoothing. Gray boxes represent two copies and black boxes one copy (deletion) for each chromosome locus. (c) Schematic representation of the genes present in the minimal deleted overlapping region defined in (b) based on the UCSC Genome Browser (http://genome.ucsc.edu/). Solid black boxes represent clusters of related genes. SNP, single-nucleotide polymorphism.

Table 1 Clinical, hematological, cytogenetic features and mutational status of ETV6

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Diagnoses</th>
<th>Karyotype</th>
<th>ETV6 Allele 1</th>
<th>ETV6 Allele 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>65</td>
<td>AML-M0</td>
<td>46,XX,del(16)(q22?),i(17)(q10),del(20)(q?)</td>
<td>Deleted</td>
<td>WT</td>
</tr>
<tr>
<td>2a</td>
<td>67</td>
<td>sAML-M0</td>
<td>47,XX,t(4;12)(q12;p13),−21,+der21delq?x2</td>
<td>Translocated</td>
<td>WT</td>
</tr>
<tr>
<td>6a</td>
<td>37</td>
<td>AML-M0</td>
<td>46,XY</td>
<td>S107DfsX21</td>
<td>V345_Y346insR</td>
</tr>
<tr>
<td>9a</td>
<td>47</td>
<td>AML-M0</td>
<td>52,XX,t(1;4)(p13;12),+6,+8,t(10;12)(q11;p11),+18,+19,+20,+21</td>
<td>Deleted</td>
<td>WT</td>
</tr>
<tr>
<td>21</td>
<td>69</td>
<td>AML-M0</td>
<td>46,XY</td>
<td>R360X</td>
<td>WT</td>
</tr>
<tr>
<td>43</td>
<td>64</td>
<td>AML-M0</td>
<td>46,XY,t(4;12)(q12;p13)</td>
<td>Translocated</td>
<td>WT</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>AML-M0</td>
<td>ND</td>
<td>Deleted</td>
<td>WT</td>
</tr>
<tr>
<td>58</td>
<td>50</td>
<td>AML-M0</td>
<td>46,XY,idic(21)(p11.2)</td>
<td>F103LfsX11</td>
<td>WT</td>
</tr>
</tbody>
</table>

Abbreviations: AML, acute myeloid leukemia; ETV6, ETS translocation-variant gene 6; ND, not done; s, secondary; WT, wild type.

a Patients in the study by Silva et al. 7

Leukemia
the remaining allele (Figure 3; Table 1). ETV6-mutant proteins with truncation and insertions comparable to ours (Table 1; Figure 3) were shown to have impaired transcriptional repression activity.5 Interestingly, all our mutants resulted in loss of the ETS domain or its binding activity, but not of the pointed (PNT) domain (Figure 3). Similar mutants reported by Barjesteh van Waalwijk van Doorn-Khosrovani et al.5 showed a dominant-negative effect when ETV6 wild-type constructs were co-transfected with higher amounts of mutant construct. However, it is possible that the dominant-negative effect is due to the overexpression of mutant ETV6 protein. In fact, expression of mutated ETV6 protein was not detected in the patients in the Barjesteh van Waalwijk van Doorn-Khosrovani et al.5 study, arguing against a dominant-negative effect.

In conclusion, the number and variety of ETV6 translocations not resulting in a fusion protein, together with loss of ETV6 by
deletion and heterozygous or homozygous mutations, makes a mutually supportive and compelling case for loss and haploinsufficiency of ETV6 as a leukemogenic step in AML-M0.

Acknowledgements

We thank H Wessels for support with karyotyping. Patient material was kindly provided by PJ Valk, Erasmus University Medical Center; W-D Ludwig, Medical University of Berlin; WAF Marijt, Leiden University Medical Center and WR Sperr, Medical University of Vienna. This work was supported by grants from the Calouste Gulbenkian Foundation and the Foundation for Science and Technology (Portugal) to FPG Silva.

FPG Silva, B Morolli, CT Storlazzi, A Zagaria, L Impera, B Klein, H Vrielinck, HC Klui-Nelemans and M Giphart-Gassler

1Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands; 2Department of Genetics and Microbiology, University of Bari, Bari, Italy; 3Department of Hematology, University of Bari, Bari, Italy; 4Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands and 5Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands

E-mail: M.Giphart-Gassler@lumc.nl

References

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)